\(\int x \sqrt {\arcsin (a x)} \, dx\) [77]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F(-2)]
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 10, antiderivative size = 59 \[ \int x \sqrt {\arcsin (a x)} \, dx=-\frac {\sqrt {\arcsin (a x)}}{4 a^2}+\frac {1}{2} x^2 \sqrt {\arcsin (a x)}+\frac {\sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arcsin (a x)}}{\sqrt {\pi }}\right )}{8 a^2} \]

[Out]

1/8*FresnelC(2*arcsin(a*x)^(1/2)/Pi^(1/2))*Pi^(1/2)/a^2-1/4*arcsin(a*x)^(1/2)/a^2+1/2*x^2*arcsin(a*x)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {4725, 4809, 3393, 3385, 3433} \[ \int x \sqrt {\arcsin (a x)} \, dx=\frac {\sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arcsin (a x)}}{\sqrt {\pi }}\right )}{8 a^2}-\frac {\sqrt {\arcsin (a x)}}{4 a^2}+\frac {1}{2} x^2 \sqrt {\arcsin (a x)} \]

[In]

Int[x*Sqrt[ArcSin[a*x]],x]

[Out]

-1/4*Sqrt[ArcSin[a*x]]/a^2 + (x^2*Sqrt[ArcSin[a*x]])/2 + (Sqrt[Pi]*FresnelC[(2*Sqrt[ArcSin[a*x]])/Sqrt[Pi]])/(
8*a^2)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4725

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSin[c*x])^n/(m
+ 1)), x] - Dist[b*c*(n/(m + 1)), Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} x^2 \sqrt {\arcsin (a x)}-\frac {1}{4} a \int \frac {x^2}{\sqrt {1-a^2 x^2} \sqrt {\arcsin (a x)}} \, dx \\ & = \frac {1}{2} x^2 \sqrt {\arcsin (a x)}-\frac {\text {Subst}\left (\int \frac {\sin ^2(x)}{\sqrt {x}} \, dx,x,\arcsin (a x)\right )}{4 a^2} \\ & = \frac {1}{2} x^2 \sqrt {\arcsin (a x)}-\frac {\text {Subst}\left (\int \left (\frac {1}{2 \sqrt {x}}-\frac {\cos (2 x)}{2 \sqrt {x}}\right ) \, dx,x,\arcsin (a x)\right )}{4 a^2} \\ & = -\frac {\sqrt {\arcsin (a x)}}{4 a^2}+\frac {1}{2} x^2 \sqrt {\arcsin (a x)}+\frac {\text {Subst}\left (\int \frac {\cos (2 x)}{\sqrt {x}} \, dx,x,\arcsin (a x)\right )}{8 a^2} \\ & = -\frac {\sqrt {\arcsin (a x)}}{4 a^2}+\frac {1}{2} x^2 \sqrt {\arcsin (a x)}+\frac {\text {Subst}\left (\int \cos \left (2 x^2\right ) \, dx,x,\sqrt {\arcsin (a x)}\right )}{4 a^2} \\ & = -\frac {\sqrt {\arcsin (a x)}}{4 a^2}+\frac {1}{2} x^2 \sqrt {\arcsin (a x)}+\frac {\sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {\arcsin (a x)}}{\sqrt {\pi }}\right )}{8 a^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.01 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.25 \[ \int x \sqrt {\arcsin (a x)} \, dx=-\frac {i \left (\sqrt {-i \arcsin (a x)} \Gamma \left (\frac {3}{2},-2 i \arcsin (a x)\right )-\sqrt {i \arcsin (a x)} \Gamma \left (\frac {3}{2},2 i \arcsin (a x)\right )\right )}{8 \sqrt {2} a^2 \sqrt {\arcsin (a x)}} \]

[In]

Integrate[x*Sqrt[ArcSin[a*x]],x]

[Out]

((-1/8*I)*(Sqrt[(-I)*ArcSin[a*x]]*Gamma[3/2, (-2*I)*ArcSin[a*x]] - Sqrt[I*ArcSin[a*x]]*Gamma[3/2, (2*I)*ArcSin
[a*x]]))/(Sqrt[2]*a^2*Sqrt[ArcSin[a*x]])

Maple [A] (verified)

Time = 0.04 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.73

method result size
default \(-\frac {2 \sqrt {\arcsin \left (a x \right )}\, \sqrt {\pi }\, \cos \left (2 \arcsin \left (a x \right )\right )-\pi \,\operatorname {FresnelC}\left (\frac {2 \sqrt {\arcsin \left (a x \right )}}{\sqrt {\pi }}\right )}{8 a^{2} \sqrt {\pi }}\) \(43\)

[In]

int(x*arcsin(a*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/a^2*(2*arcsin(a*x)^(1/2)*Pi^(1/2)*cos(2*arcsin(a*x))-Pi*FresnelC(2*arcsin(a*x)^(1/2)/Pi^(1/2)))/Pi^(1/2)

Fricas [F(-2)]

Exception generated. \[ \int x \sqrt {\arcsin (a x)} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(x*arcsin(a*x)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int x \sqrt {\arcsin (a x)} \, dx=\int x \sqrt {\operatorname {asin}{\left (a x \right )}}\, dx \]

[In]

integrate(x*asin(a*x)**(1/2),x)

[Out]

Integral(x*sqrt(asin(a*x)), x)

Maxima [F(-2)]

Exception generated. \[ \int x \sqrt {\arcsin (a x)} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(x*arcsin(a*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: expt: undefined: 0 to a negative exponent.

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.31 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.20 \[ \int x \sqrt {\arcsin (a x)} \, dx=-\frac {\left (i + 1\right ) \, \sqrt {\pi } \operatorname {erf}\left (\left (i - 1\right ) \, \sqrt {\arcsin \left (a x\right )}\right )}{32 \, a^{2}} + \frac {\left (i - 1\right ) \, \sqrt {\pi } \operatorname {erf}\left (-\left (i + 1\right ) \, \sqrt {\arcsin \left (a x\right )}\right )}{32 \, a^{2}} - \frac {\sqrt {\arcsin \left (a x\right )} e^{\left (2 i \, \arcsin \left (a x\right )\right )}}{8 \, a^{2}} - \frac {\sqrt {\arcsin \left (a x\right )} e^{\left (-2 i \, \arcsin \left (a x\right )\right )}}{8 \, a^{2}} \]

[In]

integrate(x*arcsin(a*x)^(1/2),x, algorithm="giac")

[Out]

-(1/32*I + 1/32)*sqrt(pi)*erf((I - 1)*sqrt(arcsin(a*x)))/a^2 + (1/32*I - 1/32)*sqrt(pi)*erf(-(I + 1)*sqrt(arcs
in(a*x)))/a^2 - 1/8*sqrt(arcsin(a*x))*e^(2*I*arcsin(a*x))/a^2 - 1/8*sqrt(arcsin(a*x))*e^(-2*I*arcsin(a*x))/a^2

Mupad [F(-1)]

Timed out. \[ \int x \sqrt {\arcsin (a x)} \, dx=\int x\,\sqrt {\mathrm {asin}\left (a\,x\right )} \,d x \]

[In]

int(x*asin(a*x)^(1/2),x)

[Out]

int(x*asin(a*x)^(1/2), x)